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ABSTRACT 
The rising frequency of NASA mission launches has 
highlighted the need for improvements leading to 
faster delivery of mission software without sacrificing 
reliability. In  April 1998 Jet Propulsion Laboratory 
initiated the Mission Data System (MDS) project to 
rethink the mission software lifecycle-from early 
mission design to mission operatiovand make 
changes to improve software architecture and software 
development processes. As a result, MDS has defined 
a unified flight, ground, and test data system 
architecture for space missions based on object- 
oriented design, component architecture, and domain- 
specific frameworks. This paper describes several 
architectural themes shaping the MDS design and  how 
they  help  meet objectives for faster, better, cheaper 
mission software. 

BACKGROUND 
JPL’s deep space missions tend to be one-of-a-kind, 
each with distinct science objectives, instruments, and 
mission plans. Until recently, missions were spaced 
years apart, with little attention to software reuse, 
given the rapid pace of computer technology and 
computer science. Also, since radiation-hardened 
flight computers remain years  behind their commercial 
counterparts in speed and memory, flight software has 
typically been highly customized and  tuned for each 
mission. Thus, when JPL launched six missions in six 
months between October 1998 and March 1999, it 
wasn’t surprising that there was little software reuse 
among them, except in the ground system. 

However, despite the uniqueness of each mission, they 
each  had  to independently design and develop 
mechanisms for communication, commanding, 
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attitude control, navigation, power management, fault 
protection, and  many other standard tasks, yet there 
was no common architecture or frameworks for  them 
to draw upon. Clearly, in an era of monthly missions, 
this is an inefficient way to use software-engineering 
resources. 

MISSION  DATA SYSTEM 
In order to use software-engineering resources more 
effectively and to sustain a quickened pace of 
missions, JPL initiated a project in April 1998 to 
define and develop an advanced multi-mission 
architecture for an end-to-end information system for 
deep-space missions. The system, named “Mission 
Data System” (MDS), is aimed at several institutional 
objectives: earlier collaboration of mission, system 
and software design; simpler, lower cost design, test, 
and operation; customer-controlled complexity; and 
evolvability to in situ exploration and  other 
autonomous applications. JPL’s Telecommunication 
and Mission Operations Directorate (TMOD) manages 
the  MDS project. 

This paper describes several architectural themes 
shaping the MDS design and how they help meet these 
objectives and  how they differ from earlier practices. 
Although most of these themes have resulted from a 
desire to improve flight software-and have 
compelling examples there-they apply equally  to 
ground software. Also, these themes apply equally to 
all kinds of robots, whether spacecraft or probes or 
rovers. 

AN ARCHITECTURAL APPROACH 
Theme: Construct subsystems from architectural 
elements, not the other  way around. 

It  has been traditional in JPL missions to divide the 
work along five dimensions: flight vs. ground  vs. test, 
design vs. test vs. operations, engineering vs. science, 
downlink vs. uplink, and subsystems (navigation vs. 
power  vs. propulsion vs. telecom, etc). With the work 
so compartmentalized, software engineers naturally 
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applied their own customized solutions within each 
realm, resulting in minimal reuse and requiring many 
iterations at integrating the subsystems. The net result 
was always architecture constructed from subsystems. 

In MDS there is a quest to find common problems and 
create common solutions, and also to tailor general 
solutions to particular problems. This quest is driven 
by the recognition that managing interactions is the 
foundation of good design. For example, different 
activities in different subsystems issue commands that 
consume power, and  they can potentially interfere with 
each other unless there is a coordination service that 
keeps track of available power and who has authority 
to control each device. Creating such a coordination 
service enables a cleaner simpler design because it 
controls interactions through a common service rather 
than through private subsystem-to-subsystem 
agreements, thereby decreasing the coupling between 
subsystems. It similarly simplifies unit testing of 
subsystems. The net result from applying this 
approach is that subsystems get constructed from 
architectural elements, not the other way around. 

GROUND-TO-FLIGHT MIGRATION 
Theme: Migrate capability ffom ground to$ight, when 
appropriate,  to simpllfy operations. 

MDS  takes a unified  view  of flight and  ground tasks 
because of opportunity and need. With increasingly 
powerful flight processors the opportunity exists to 
migrate to the spacecraft (or rover) some processing 
that  has traditionally been performed on the ground, 
thereby reducing the need for flight-ground 
communication. Such migration might occur well after 
launch, after ground operators have gained experience 
with the real spacecraft and have decided that some 
activities can be automated, without further human-in- 
the-loop control. More importantly, the need for such 
migration exists in order to accomplish missions that 
must react quickly to events, without earth-in-the-loop 
light-time delays, such as autonomous landing on a 
comet and rover explorations on Mars. For these 
reasons both flight and ground capabilities must be 
designed for a shared architecture. 

STATE & MODELS ARE CENTRAL 
Theme: System state  and  models form the foundation 
for monitoring and control. 

MDS is founded upon a state-based architecture, 
where state is a representation of the momentary 
condition of an evolving system. System states include 
device operating modes, device health states, resource 
levels, temperatures, pressures, etc, as well as 

environmental states such as the motions of celestial 
bodies and solar flux. Some aspects of system state are 
best described as functions of other states; e.g., 
pointing can be derived from attitude and trajectory. In 
all cases state is accessible through state  variables (as 
opposed to a program’s local variables), and state 
evolution is described on state  timelines. State 
timelines provide the fundamental coordinating 
mechanism since they describe both knowledge and 
intent. 
A state-based architecture implies the need for models 
since models describe how a system’s state evolves. 
Together, state and models supply what is needed  to 
operate a system, predict future state, control toward a 
desired state, and assess performance. 

EXPLICIT USE  OF MODELS 
Theme: Express domain  knowledge explicitly in 
models  rather than implicitly in program logic. 

Much  of  what  makes software different from mission 
to  mission is domain knowledge about instruments and 
actuators and sensors and plumbing and  wiring  and 
many other things. This knowledge includes 
relationships such as how power varies with solar 
incidence angle, conditions such as the fact that gyros 
saturate above a certain rate, state machines that 
prescribe safe sequences for valve operation, and 
dynamic models that predict how long a turn will take. 
Conventional practice has been to develop programs 
whose logic implicitly contains such domain 
knowledge, but this expresses the knowledge in a 
“hidden” form that is hard  to validate and  hard  to 
reuse. 

In contrast, MDS advocates that domain knowledge be 
represented more explicitly in inspectable models. 
Such models can be tables or spreadsheets or rules or 
state machines or any  of several forms, as long as they 
separate the domain knowledge from the general logic 
for applying that knowledge to solve a problem. The 
task  of customizing MDS for a mission, then, becomes 
largely a task of defining and validating models. 

GOAL-DIRECTED  OPERATION 
Theme: Operate missions via specijications of desired 
state  rather than sequences of actions. 

Traditionally, spacecraft have been controlled through 
linear (non-branching) command sequences that  have 
been carefully designed on the ground. Such design is 
difficult for two reasons. First, ground must predict 
spacecraft state for the time at  which the sequence is 
scheduled to start, and that’s difficult to know  with 
confidence because of flighdground communication 
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Figure 1. This figure illustrates several MDS architectural themes: the central role of state knowledge 
and models, goal-directed operation, closed-loop control, and the separation of state determination from 
state control. 

limitations (data rate and light-time delay). Second, in 
the event that the actual spacecraft state is different 
than the predicted state, the sequence should be 
designed to fail rather than chance doing something 
harmful. 

MDS, in contrast, controls stat&oth flight and 
ground state-via “goals”. A goal is defined as a 
prioritized constraint on the value of a state variable 
during a time interval. A goal differs from a command 
in that it specifies intent in the form of desired state. 
Such goal-directed operation is simpler than traditional 
sequencing because a goal is easier to specify than the 
actions needed to accomplish it. Importantly, goals 
specify only success criteria; they leave options open 
about the means of accomplishing the goal and the 
possible use  of alternate actions to recover from 
problems. A goal is a unifying concept that 
encompasses daily operations, maintenance and 
calibration, resource allocation, flight rules, and fault 
responses. Of course, all of this begs the question of 
who or what elaborates a goal into a program of 
actions, which brings us to closed-loop control and 
goal-achieving modules. 

CLOSED-LOOP CONTROL 
Theme:  Design for real-time reaction to changes  in 
state rather than for open-loop commands  or earth-in- 
the-loop control. 

Goal-directed operation implies closed-loop control. In 
MDS a state controller is termed a goal-achieving 
module (GAM). A GAM controls state by comparing 
present state to desired state, then deciding how  to 
change the state if necessary, then issuing either sub- 
goals to lower-level GAMS or issuing direct low-level 
actions (i.e., primitive actions). When a GAM accepts 
a goal it must either achieve the goal or responsibly 
report that it cannot. A GAM’S logic can be arbitrarily 
simple or sophisticated, but it must always keep the 
goal issuer informed about the goal’s status. 

Most GAMs achieve their goals by issuing sub-goals, 
thus creating a hierarchy of GAMs. Naturally, the 
bottom layer of GAMS bottoms out in primitive 
actions. Importantly, GAMS can report why  they  acted 
as they did in terms of  what discrepancies between 
state and goals prompted action, and  what sub-goals or 
commands were issued in response. Also, since GAMs 
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are self-checking by definition, goal failures will be 
visible (through goal status) during testing. 

INTEGRAL  FAULT  PROTECTION 
Theme: Fault protection must be an integral part of 
the design, not an add-on. 

Fault protection, which includes fault detection, 
localization, and recovery, has often been treated as an 
add-on to a basic command & control system. As 
such, it was designed after the control system and 
arrived later in the project cycle. Such was the case for 
the Cassini attitude and articulation control system, 
and an interesting thing happened the day that fault 
protection was first enabled: numerous faults were 
detected in a control system that  had already 
undergone a fair amount of testing. The Cassini AACS 
team learned more in that month than  they  had  in the 
previous six months because they finally had 
independent detailed monitoring of system behavior. 

In MDS fault protection will be an integral part of the 
desigw-not an add-oHecause  it is an essential part 
of robust control and because it is extremely valuable 
during system testing. Goal-achieving modules in 
MDS  need at least some minimum level of fault 
detection since they must report when an active goal is 
not being achieved. GAMS  may also provide recovery 
strategies ranging from very simple to very 
sophisticated. 

REAL-TIME RESOURCE 
MANAGEMENT 

Theme: Resource usage must be authorized and 
monitored by a resource manager. 

“Resources” are things like available battery energy, 
power, fuel, memory, thermal margin, etc. Overuse of 
spacecraft resources can be disastrous, such as 
accidentally using too much  power  near the time of a 
critical orbit insertion maneuver, causing the 
spacecraft power bus to trip. For reasons like this 
ground operators have tended to be very conservative 
about resource usage, especially given their time- 
delayed knowledge of it. However, such conservative 
operation limits the amount of science data acquisition 
and return, especially during periods of great 
opportunity, such as during a fly-by or a short-lived 
science event. 

MDS avoids this kind of operational dilemma through 
a resource management mechanism that prevents 
overuse, even if a resource is accidentally 
oversubscribed. Specifically, resource-using activities 
are forced obtain a “ticket” in order to  use a given 

resource, much as one obtains a file descriptor in order 
to access a file. An activity must state to a resource 
manager the amount of resource and the time interval 
when it is needed, and the ticket is issued only if the 
usage does not conflict with  any other higher-priority 
usage. Further, if measurements show that more of a 
resource is being used than was ticketed (such as 
might occur from an unexplained power drain), the 
manager can disable one  or more tickets until  an 
adequate margin is recovered. Because a resource 
manager always knows the available amount, other 
activities can be triggered to opportunistically use the 
resource, thereby increasing science data return. 

SEPARATION OF STATE 
DETERMINATION AND CONTROL 

Theme: For consistency, simplicity and clarity, 
separate state determination logic from control logic. 

It’s not unusual to see software that co-mingles control 
logic with state determination logic, but this practice is 
usually a had idea for three reasons. First, if two or 
more controllers each make their own private 
determination for the same state variable, their 
estimates may differ, potentially leading to conflicting 
control actions. Second, mixing two distinct tasks in 
the same module makes the code harder to understand 
and less reusable. Third, these two tasks are an ill fit in 
the same module because control has a hierarchical 
structure based on delegation of authority whereas 
state determination has a network structure based on 
pathways of interaction mechanisms (electrical, 
thermal, etc.). 

Architecturally, MDS separates state determination 
from state control, coupled only through state 
variables. State determination is a process of 
interpreting measurements to generate state 
knowledge, and the process may combine multiple 
sources of evidence into a determination of state, 
supplied to a state variable as an estimate. Control, in 
contrast, attempts to achieve goals by issuing 
commands and sub-goals that should drive estimated 
state toward desired state. Keeping these two  tasks 
separate simplifies design, programming, and testing, 
and also allows for independent improvements. 

ACKNOWLEDGE STATE 
UNCERTAINTY 

Theme: State determination must be honest about the 
evidence; state estimates are not  facts. 

State values are rarely known with certainty, but a lot 
of software effectively pretends that they are by 
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treating state estimates as facts. However, disastrous 
errors can result when control decisions are based on 
highly uncertain state. For example, it is probably 
unwise to perform a main-engine burn  when the 
estimated position of the engine gimbals is below 
some minimum certainty. Uncertainty can arise in 
several ways, sometimes as conflicting evidence, 
sometimes through characteristic degradation of 
sensors, and sometimes during periods of rapid 
dynamic change. 

MDS takes the position that a level of certainty should 
accompany every state estimate. State determination 
must  be honest about what the evidence is telling it. If 
there are two credible pieces of evidence that conflict, 
and there’s no timely way to reconcile the conflict, 
then the resulting state estimate must have an 
appropriately reduced level of certainty. Similarly, 
control must take into account the certainty level of 
the state estimates upon  which it is basing a decision. 
If certainty drops below some context-specific 
minimum, then control must react appropriately, 
perhaps by attempting an alternate approach or by 
abandoning a goal entirely. 

SEPARATION OF DATA 
MANAGEMENT  FROM  DATA 

TRANSPORT 
Theme: Separate data management duties and 
structures from those of data transport. 

Flighdground data management has long been tightly 
coupled with data transport issues, largely because 
such capabilities evolved from a time when flight 
processors were extremely limited. This resulted  in 
application code that  was built around the CCSDS 
packet format, for example. While such designs had 
some justification in the speed and  memory constraints 
of earlier missions, the time has come to adopt a 
cleaner separation and prepare for the day  when 
spacecraft are in fact nodes in an inter-planetary 
network. 

MDS clearly distinguishes between data management 
and data transport. The former elevates data products 
as entities in their own right, as objects and files that 
can be updated and summarized and aged, and  that 
may or may not be destined for ground. In fact, data 
management is a service that transcends the flight- 
ground divide so that data products are treated 
consistently in both places. Data transport, in contrast, 
can access any data product and serialize it for 
transport between flight and ground. Packet formats 
and link protocols are completely hidden from the 
level of data management. Decoupling these two 

capabilities keeps the design and testing simpler for 
each and allows for independent improvements. 

JOINING  NAVIGATION WITH 
ATTITUDE CONTROL 

Theme: Navigation and attitude control must  build 
ffom a common mathematical base. 

Navigation and attitude control have been weakly 
coupled on most JPL missions because, in  empty 
space, they operate on vastly different time scales and 
their dynamics don’t greatly affect each other. As 
such, navigation software and attitude control software 
have been developed largely independent development 
efforts. In upcoming missions, however, the coupling 
becomes much tighter. For example, escape velocity 
near an asteroid is so small that firing thrusters for 
attitude control can significantly affect trajectory. 
Likewise, docking with another vehicle, as in a 
sample-return mission, requires navigation and attitude 
corrections on similar time scales. 

The approach that MDS is taking here, as in other 
areas, is to design common architectural mechanisms 
for common problems. Since the same forces influence 
navigation and attitude control, the architecture must 
allow for a common model; since both are solving 
geometry problems, the architecture must provide for 
common solvers. 

UPWARD COMPATIBILITY 
Theme: Design interfaces to accommodate foreseeable 
advances in technology. 

MDS is intended to serve missions for many  years  to 
come, and during that time there will be numerous 
advances in software technology for control systems, 
fault detection & diagnosis, planning & scheduling, 
databases, communication protocols, etc. MDS  must 
be prepared to exploit such technologies else it will 
become an obstacle rather than  an enabler for 
increasingly challenging missions, but MDS also 
needs to maintain some architectural stability to 
amortize its cost over its missions. The strategy for 
achieving this centers around careful design of 
architectural interfaces, behind which a variety of 
technical approaches can be used. Specifically, MDS 
designers consult with researchers to understand  how 
software interfaces may  need to evolve, and  then 
implement a restrict subset of an interface using 
current mission-ready technology. When the more 
advanced technology becomes mission-ready, they 
implement the fuller interface in an  upward 
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compatible manner, namely, in a manner  that still 
works for interface clients that use the restricted 
subset. Thus, interface client software is not forced to 
change on the same schedule as interface provider 
software. 

The value  of  upward compatibility is powerfully 
illustrated in the history of IBM. In 1964 when IBM 
introduced the Systeml360 architecture, they 
transformed the computer industry with the first 
“compatible” family of computers. Software and 
peripherals worked virtually interchangeably on any  of 
the five original processors, so customer investments 
were preserved when they upgraded to a more 
powerful processor. IBM continued to improve the 
technology over  the years, but always within the 
Systed360 architecture and  its extensions. Although 
the MDS architecture applies to a much smaller 
marketplace, the benefits of  upward compatibility 
make sense for MDS customers and providers. 

BENEFIT  TO  MDS CUSTOMERS 
The main value of MDS is that it should enable 
customer missions to focus on mission-specific design 
and development without having to create and  test a 
supporting infrastructure. Customers will receive a set 
of pre-integrated and pre-tested frameworks, complete 
with executable example uses of those frameworks 
running on a simulated spacecraft and mission. These 
frameworks will be based on an object-oriented design 
described in Unified Modeling Language (UML) 
[OMG,  19971, the lingua franca of MDS software 
design and scenario description. 

As a project, MDS is balancing a long-term 
architectural vision against a near-term commitment to 
its first customer mission, Europa Orbiter, scheduled 
to launch  in 2003. Such commitments help focus MDS 
design efforts on pragmatic, well-understood 
mechanisms for supporting the architectural themes. 

HISTORICAL  CONTEXT 
In a 1995 joint study between NASA Ames  and JPL 
known as the New Millennium Autonomy 
Architecture Prototype (NewMAAP) a number  of 
existing concepts for improving flight software were 
brought together in a prototype form. These concepts 
included goal-based commanding, closed-loop control, 
model-based diagnosis, onboard resource 
management, and onboard planning. When the Deep 
Space One (DS-1) mission was subsequently 
announced as a technology validation mission, the 

NewMAAP project rapidly segued into the Remote 
Agent project [Pell et al, 19971. In  May 1999 the 
Remote Agent experiment (RAX) flew on DS-1 and 
provided the first in-flight demonstration of the 
concepts. The MDS project, which is populated with 
many people who worked on or with RAX, was 
established in April 1998 to define and develop an 
advanced multi-mission data system that unifies the 
flight, ground, and test elements in a common 
architecture. That architecture is shaped with the 
themes described in this paper. 
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